Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
J Clin Invest ; 134(5)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38227368

RESUMO

Spinocerebellar ataxia type 3 (SCA3) is an adult-onset neurodegenerative disease caused by a polyglutamine expansion in the ataxin-3 (ATXN3) gene. No effective treatment is available for this disorder, other than symptom-directed approaches. Bile acids have shown therapeutic efficacy in neurodegenerative disease models. Here, we pinpointed tauroursodeoxycholic acid (TUDCA) as an efficient therapeutic, improving the motor and neuropathological phenotype of SCA3 nematode and mouse models. Surprisingly, transcriptomic and functional in vivo data showed that TUDCA acts in neuronal tissue through the glucocorticoid receptor (GR), but independently of its canonical receptor, the farnesoid X receptor (FXR). TUDCA was predicted to bind to the GR, in a similar fashion to corticosteroid molecules. GR levels were decreased in disease-affected brain regions, likely due to increased protein degradation as a consequence of ATXN3 dysfunction being restored by TUDCA treatment. Analysis of a SCA3 clinical cohort showed intriguing correlations between the peripheral expression of GR and the predicted age at disease onset in presymptomatic subjects and FKBP5 expression with disease progression, suggesting this pathway as a potential source of biomarkers for future study. We have established a novel in vivo mechanism for the neuroprotective effects of TUDCA in SCA3 and propose this readily available drug for clinical trials in SCA3 patients.


Assuntos
Doença de Machado-Joseph , Doenças Neurodegenerativas , Ácido Tauroquenodesoxicólico , Camundongos , Adulto , Animais , Humanos , Doença de Machado-Joseph/tratamento farmacológico , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/metabolismo , Receptores de Glucocorticoides/genética , Camundongos Transgênicos
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166980, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38061599

RESUMO

Disruption of brain cholesterol homeostasis has been implicated in neurodegeneration. Nevertheless, the role of cholesterol in Parkinson's Disease (PD) remains unclear. We have used N2a mouse neuroblastoma cells and primary cultures of mouse neurons and 1-methyl-4-phenylpyridinium (MPP+), a known mitochondrial complex I inhibitor and the toxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), known to trigger a cascade of events associated with PD neuropathological features. Simultaneously, we utilized other mitochondrial toxins, including antimycin A, oligomycin, and carbonyl cyanide chlorophenylhydrazone. MPP+ treatment resulted in elevated levels of total cholesterol and in a Niemann Pick type C1 (NPC1)-like phenotype characterized by accumulation of cholesterol in lysosomes. Interestingly, NPC1 mRNA levels were specifically reduced by MPP+. The decrease in NPC1 levels was also seen in midbrain and striatum from MPTP-treated mice and in primary cultures of neurons treated with MPP+. Together with the MPP+-dependent increase in intracellular cholesterol levels in N2a cells, we observed an increase in 5' adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and a concomitant increase in the phosphorylated levels of mammalian target of rapamycin (mTOR). NPC1 knockout delayed cell death induced by acute mitochondrial damage, suggesting that transient cholesterol accumulation in lysosomes could be a protective mechanism against MPTP/MPP+ insult. Interestingly, we observed a negative correlation between NPC1 protein levels and disease stage, in human PD brain samples. In summary, MPP+ decreases NPC1 levels, elevates lysosomal cholesterol accumulation and alters mTOR signaling, adding to the existing notion that PD may rise from alterations in mitochondrial-lysosomal communication.


Assuntos
Doença de Parkinson , Animais , Humanos , Camundongos , Colesterol/metabolismo , Mamíferos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteína C1 de Niemann-Pick , Fenótipo , Serina-Treonina Quinases TOR/metabolismo
3.
Hepatology ; 79(5): 1158-1179, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36811413

RESUMO

Hepatocytes work in highly structured, repetitive hepatic lobules. Blood flow across the radial axis of the lobule generates oxygen, nutrient, and hormone gradients, which result in zoned spatial variability and functional diversity. This large heterogeneity suggests that hepatocytes in different lobule zones may have distinct gene expression profiles, metabolic features, regenerative capacity, and susceptibility to damage. Here, we describe the principles of liver zonation, introduce metabolomic approaches to study the spatial heterogeneity of the liver, and highlight the possibility of exploring the spatial metabolic profile, leading to a deeper understanding of the tissue metabolic organization. Spatial metabolomics can also reveal intercellular heterogeneity and its contribution to liver disease. These approaches facilitate the global characterization of liver metabolic function with high spatial resolution along physiological and pathological time scales. This review summarizes the state of the art for spatially resolved metabolomic analysis and the challenges that hinder the achievement of metabolome coverage at the single-cell level. We also discuss several major contributions to the understanding of liver spatial metabolism and conclude with our opinion on the future developments and applications of these exciting new technologies.


Assuntos
Hepatopatias , Fígado , Humanos , Fígado/metabolismo , Hepatócitos/metabolismo , Hepatopatias/metabolismo , Transcriptoma , Metabolômica
4.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 166993, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38142760

RESUMO

Cholesterol 24-hydroxylase (CYP46A1) is an exclusively neuronal cytochrome P450 enzyme responsible for converting cholesterol into 24S-hydroxycholesterol, which serves as the primary pathway for eliminating cholesterol in the brain. We and others have shown that increased activity of CYP46A1 leads to reduced levels of cholesterol and has a positive effect on cognition. Therefore, we hypothesized that CYP46A1 could be a potential therapeutic target in Niemann-Pick type C (NPC) disease, a rare and fatal neurodegenerative disorder, characterized by cholesterol accumulation in endolysosomal compartments. Herein, we show that CYP46A1 ectopic expression, in cellular models of NPC and in Npc1tm(I1061T) mice by adeno-associated virus-mediated gene therapy improved NPC disease phenotype. Amelioration in functional, biochemical, molecular and neuropathological hallmarks of NPC disease were characterized. In vivo, CYP46A1 expression partially prevented weight loss and hepatomegaly, corrected the expression levels of genes involved in cholesterol homeostasis, and promoted a redistribution of brain cholesterol accumulated in late endosomes/lysosomes. Moreover, concomitant with the amelioration of cholesterol metabolism dysregulation, CYP46A1 attenuated microgliosis and lysosomal dysfunction in mouse cerebellum, favoring a pro-resolving phenotype. In vivo CYP46A1 ectopic expression improves important features of NPC disease and may represent a valid therapeutic approach to be used concomitantly with other drugs. However, promoting cholesterol redistribution does not appear to be enough to prevent Purkinje neuronal death in the cerebellum. This indicates that cholesterol buildup in neurons might not be the main cause of neurodegeneration in this human lipidosis.


Assuntos
Doença de Niemann-Pick Tipo C , Camundongos , Humanos , Animais , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/terapia , Doença de Niemann-Pick Tipo C/metabolismo , Colesterol 24-Hidroxilase/metabolismo , Colesterol 24-Hidroxilase/uso terapêutico , Colesterol/metabolismo , Encéfalo/metabolismo , Cerebelo/patologia
5.
Mar Drugs ; 21(12)2023 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-38132933

RESUMO

Marine sponges are highly efficient in removing organic pollutants and their cultivation, adjacent to fish farms, is increasingly considered as a strategy for improving seawater quality. Moreover, these invertebrates produce a plethora of bioactive metabolites, which could translate into an extra profit for the aquaculture sector. Here, we investigated the chemical profile and bioactivity of two Mediterranean species (i.e., Agelas oroides and Sarcotragus foetidus) and we assessed whether cultivated sponges differed substantially from their wild counterparts. Metabolomic analysis of crude sponge extracts revealed species-specific chemical patterns, with A. oroides and S. foetidus dominated by alkaloids and lipids, respectively. More importantly, farmed and wild explants of each species demonstrated similar chemical fingerprints, with the majority of the metabolites showing modest differences on a sponge mass-normalized basis. Furthermore, farmed sponge extracts presented similar or slightly lower antibacterial activity against methicillin-resistant Staphylococcus aureus, compared to the extracts resulting from wild sponges. Anticancer assays against human colorectal carcinoma cells (HCT-116) revealed marginally active extracts from both wild and farmed S. foetidus populations. Our study highlights that, besides mitigating organic pollution in fish aquaculture, sponge farming can serve as a valuable resource of biomolecules, with promising potential in pharmaceutical and biomedical applications.


Assuntos
Agelas , Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Poríferos , Animais , Humanos , Poríferos/química , Agelas/química , Staphylococcus aureus Resistente à Meticilina/metabolismo , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/metabolismo
6.
Front Vet Sci ; 10: 1236136, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711439

RESUMO

Introduction: Cancer is a major public health problem with over 19 million cases reported in 2020. Similarly to humans, dogs are also largely affected by cancer, with non-Hodgkin's lymphoma (NHL) among the most common cancers in both species. Comparative medicine has the potential to accelerate the development of new therapeutic options in oncology by leveraging commonalities between diseases affecting both humans and animals. Within this context, in the present study, we investigated the potential of panobinostat (Pan)-loaded folate-targeted PEGylated liposomes (FA-PEG-Pan-Lip) for the treatment of canine B-cell lymphoma, while contributing to new perspectives in comparative oncology. Methods and results: Two formulations were developed, namely: PEG-Pan-Lip and FA-PEG-Pan-Lip. Firstly, folate receptor expression in the CLBL-1 canine B-cell lymphoma cell line was assessed. After confirming receptor expression, both Pan-loaded formulations (PEG-Pan-Lip, FA-PEG-Pan-Lip) demonstrated dose-dependent inhibitory effects on CLBL-1 cell proliferation. The FA-PEG-Pan-Lip formulation (IC50 = 10.9 ± 0.03 nM) showed higher cytotoxicity than the non-targeted PEG-Pan-Lip formulation (IC50 = 12.9 ± 0.03 nM) and the free panobinostat (Pan) compound (IC50 = 18.32±0.03 nM). Moreover, mechanistically, both Pan-containing formulations induced acetylation of H3 histone and apoptosis. Flow cytometry and immunofluorescence analysis of intracellular uptake of rhodamine-labeled liposome formulations in CLBL-1 cells confirmed cellular internalization of PEG-Lip and FA-PEG-Lip formulations and higher uptake profile for the latter. Biodistribution studies of both radiolabeled formulations in CD1 and SCID mice revealed a rapid clearance from the major organs and a 1.6-fold enhancement of tumor uptake at 24 h for 111In-FA-PEG-Pan-Lip (2.2 ± 0.1 %ID/g of tumor) compared to 111In-PEG-Pan-Lip formulation (1.2±0.2 %ID/g of tumor). Discussion: In summary, our results provide new data validating Pan-loaded folate liposomes as a promising targeted drug delivery system for the treatment of canine B-cell lymphoma and open innovative perspectives for comparative oncology.

7.
Clin Sci (Lond) ; 137(15): 1095-1114, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37530554

RESUMO

The increasing prevalence of obesity brings forward its importance as a risk factor for cancer development, particularly in the gastrointestinal tract. Obesity may trigger cancer development through several mechanisms, where metabolic deregulation of adipokines can modulate multiple oncogenic molecular pathways. Leptin and adiponectin are the most well-studied adipokines, and their imbalance can trigger different tumorigenic responses. Both epidemiologic and experimental studies have associated leptin with increased cancer risk and cell responsiveness in carcinogenesis and tumor invasion. On the other hand, adiponectin is reported to elicit the opposite effect. In addition to circulating or tissue adipokine levels, adiponectin, and leptin receptors or genetic polymorphisms may also play a role in cancer development. Moreover, adiponectin and leptin modulation offer valuable therapeutic approaches. We will review the links underpinning obesity and cancer development and focus on discussing the pathophysiological roles of leptin and adiponectin.


Assuntos
Neoplasias Gastrointestinais , Leptina , Humanos , Leptina/metabolismo , Adiponectina/metabolismo , Obesidade/metabolismo , Adipocinas/metabolismo , Neoplasias Gastrointestinais/etiologia , Carcinogênese
8.
Liver Int ; 43(10): 2256-2274, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37534739

RESUMO

BACKGROUND AND AIMS: The mechanisms governing the progression of non-alcoholic fatty liver disease (NAFLD) towards steatohepatitis (NASH) and hepatocellular carcinoma (HCC) remain elusive. Here, we evaluated the role of hsa-miRNA-21-5p in NASH-related hepatocarcinogenesis. METHODS: Hepatic hsa-miR-21-5p expression was evaluated in two cohorts of patients with biopsy-proven NAFLD (n = 199) or HCC (n = 366 HCC and n = 11 NAFLD-HCC). Serum/liver metabolomic profiles were correlated with hsa-miR-21-5p in NAFLD obese patients. Wild-type (WT) and Mir21 KO mice were fed a choline-deficient, amino acid-defined (CDAA) diet for 32 and 66 weeks to induce NASH and NASH-HCC, respectively. RESULTS: In obese individuals, hsa-miR-21-5p expression increased with NAFLD severity and associated with a hepatic lipotoxic profile. CDAA-fed WT mice displayed increased hepatic mmu-miR-21-5p levels and progressively developed NASH and fibrosis, with livers presenting macroscopically discernible pre-neoplastic nodules, hyperplastic foci and deregulated cancer-related pathways. Mir21 KO mice exhibited peroxisome-proliferator-activated receptor α (PPARα) activation, augmented mitochondrial activity, reduced liver injury and NAS below the threshold for NASH diagnosis, with the pro-inflammatory/fibrogenic milieu reversing to baseline levels. In parallel, Mir21 KO mice displayed reduced number of pre-neoplastic nodules, hepatocyte proliferation and activation of oncogenic signalling, being protected from NASH-associated carcinogenesis. The hsa-miRNA-21-5p/PPARα pathway was similarly deregulated in patients with HCC- or NASH-related HCC, correlating with HCC markers and worse prognosis. CONCLUSIONS: Hsa-miR-21-5p is a key inducer of whole-spectrum NAFLD progression, from simple steatosis to NASH and NASH-associated carcinogenesis. The inhibition of hsa-miR-21-5p, leading to a pro-metabolic profile, might constitute an appealing therapeutic approach to ameliorate NASH and prevent progression towards HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , PPAR alfa , Fígado/patologia , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Obesidade/metabolismo , Colina/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
9.
Adv Sci (Weinh) ; 10(25): e2300299, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37434063

RESUMO

Immune checkpoint blockade reaches remarkable clinical responses. However, even in the most favorable cases, half of these patients do not benefit from these therapies in the long term. It is hypothesized that the activation of host immunity by co-delivering peptide antigens, adjuvants, and regulators of the transforming growth factor (TGF)-ß expression using a polyoxazoline (POx)-poly(lactic-co-glycolic) acid (PLGA) nanovaccine, while modulating the tumor-associated macrophages (TAM) function within the tumor microenvironment (TME) and blocking the anti-programmed cell death protein 1 (PD-1) can constitute an alternative approach for cancer immunotherapy. POx-Mannose (Man) nanovaccines generate antigen-specific T-cell responses that control tumor growth to a higher extent than poly(ethylene glycol) (PEG)-Man nanovaccines. This anti-tumor effect induced by the POx-Man nanovaccines is mediated by a CD8+ -T cell-dependent mechanism, in contrast to the PEG-Man nanovaccines. POx-Man nanovaccine combines with pexidartinib, a modulator of the TAM function, restricts the MC38 tumor growth, and synergizes with PD-1 blockade, controlling MC38 and CT26 tumor growth and survival. This data is further validated in the highly aggressive and poorly immunogenic B16F10 melanoma mouse model. Therefore, the synergistic anti-tumor effect induced by the combination of nanovaccines with the inhibition of both TAM- and PD-1-inducing immunosuppression, holds great potential for improving immunotherapy outcomes in solid cancer patients.


Assuntos
Melanoma , Macrófagos Associados a Tumor , Camundongos , Animais , Linhagem Celular Tumoral , Imunoterapia , Linfócitos T CD8-Positivos , Microambiente Tumoral
10.
Biomedicines ; 11(4)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37189814

RESUMO

Apoptosis is a programmed cell death routine that plays an essential role in several biological processes, namely, embryonic development, tissue homeostasis, and immune response [...].

11.
Int J Pharm ; 640: 123011, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37146952

RESUMO

Melanoma is the most aggressive form of skin cancer, with increasing incidence and mortality rates. To overcome current treatment limitations, a hybrid molecule (HM) combining a triazene and a sulfur L-tyrosine analogue, was recently synthesized, incorporated in long blood circulating liposomes (LIP HM) and validated in an immunocompetent melanoma model. The present work constitutes a step forward in the therapeutic assessment of HM formulations. Here, human melanoma cells, A375 and MNT-1, were used and dacarbazine (DTIC), a triazene drug clinically available as first-line treatment for melanoma, constituted the positive control. In cell cycle analysis, A375 cells, after 24-h incubation with HM (60 µM) and DTIC (70 µM), resulted in a 1.2 fold increase (related to control) in the percentage of cells in G0/G1 phase. The therapeutic activity was evaluated in a human murine melanoma model (subcutaneously injected with A375 cells) to most closely resemble the human pathology. Animals treated with LIP HM exhibited the highest antimelanoma effect resulting in a 6-, 5- and 4-fold reduction on tumor volume compared to negative control, Free HM and DTIC groups, respectively. No toxic side effects were detected. Overall, these results constitute another step forward in the validation of the antimelanoma activity of LIP HM, using a murine model that more accurately simulates the pathology that occurs in human patients.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Animais , Camundongos , Nanomedicina , Melanoma/metabolismo , Dacarbazina , Neoplasias Cutâneas/patologia , Linhagem Celular Tumoral , Apoptose
12.
Pharmaceutics ; 15(4)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37111608

RESUMO

In recent years, gold nanoparticles (AuNPs) have aroused the interest of many researchers due to their unique physicochemical and optical properties. AuNPs are being explored in a variety of biomedical fields, either in diagnostics or therapy, particularly for localized thermal ablation of cancer cells after light irradiation. Besides the promising therapeutic potential of AuNPs, their safety constitutes a highly important issue for any medicine or medical device. For this reason, in the present work, the production and characterization of physicochemical properties and morphology of AuNPs coated with two different materials (hyaluronic and oleic acids (HAOA) and bovine serum albumin (BSA)) were firstly performed. Based on the above importantly referred issue, the in vitro safety of developed AuNPs was evaluated in healthy keratinocytes, human melanoma, breast, pancreatic and glioblastoma cancer cells, as well as in a three-dimensional human skin model. Ex vivo and in vivo biosafety assays using, respectively, human red blood cells and Artemia salina were also carried out. HAOA-AuNPs were selected for in vivo acute toxicity and biodistribution studies in healthy Balb/c mice. Histopathological analysis showed no significant signs of toxicity for the tested formulations. Overall, several techniques were developed in order to characterize the AuNPs and evaluate their safety. All these results support their use for biomedical applications.

13.
Gastroenterology ; 165(1): 187-200.e7, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36966941

RESUMO

BACKGROUND & AIMS: Excess copper causes hepatocyte death in hereditary Wilson's disease (WD). Current WD treatments by copper-binding chelators may gradually reduce copper overload; they fail, however, to bring hepatic copper close to normal physiological levels. Consequently, lifelong daily dose regimens are required to hinder disease progression. This may result in severe issues due to nonadherence or unwanted adverse drug reactions and also due to drug switching and ultimate treatment failures. This study comparatively tested bacteria-derived copper binding agents-methanobactins (MBs)-for efficient liver copper depletion in WD rats as well as their safety and effect duration. METHODS: Copper chelators were tested in vitro and in vivo in WD rats. Metabolic cage housing allowed the accurate assessment of animal copper balances and long-term experiments related to the determination of minimal treatment phases. RESULTS: We found that copper-binding ARBM101 (previously known as MB-SB2) depletes WD rat liver copper dose dependently via fecal excretion down to normal physiological levels within 8 days, superseding the need for continuous treatment. Consequently, we developed a new treatment consisting of repetitive cycles, each of ∼1 week of ARBM101 applications, followed by months of in-between treatment pauses to ensure a healthy long-term survival in WD rats. CONCLUSIONS: ARBM101 safely and efficiently depletes excess liver copper from WD rats, thus allowing for short treatment periods as well as prolonged in-between rest periods.


Assuntos
Degeneração Hepatolenticular , Ratos , Animais , Degeneração Hepatolenticular/tratamento farmacológico , Degeneração Hepatolenticular/metabolismo , Cobre , Eliminação Hepatobiliar , Fígado/metabolismo , Quelantes/farmacologia , Quelantes/uso terapêutico
14.
Mol Carcinog ; 62(5): 577-582, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36752344

RESUMO

Hepatocellular carcinoma (HCC) is one of the most worrying tumors worldwide today, and its epidemiology is on the rise. Traditional pharmacological approaches have shown unfavorable results and exhibited many side effects. Hence, there is a need for new efficacious molecules with fewer side effects and improvements on traditional approaches. We previously showed that lysophosphatidic acid (LPA) supports hepatocarcinogenesis, and its effects are mainly mediated by LPA receptor 6 (LPAR6). We also reported that 9-xanthylacetic acid (XAA) acts as an antagonist of LPAR6 to inhibit the growth of HCC. Here, we report that LPAR6 is involved in the choline-deficient l-amino acid-defined (CDAA) diet-induced hepatocarcinogenesis in mice. Our data demonstrate that CDAA diet-induced metabolic imbalance stimulates LPAR6 expression in mice and that XAA counteracts diet-induced effects on hepatic lipid accumulation, fibrosis, inflammation, and HCC development. These conclusions are corroborated by results on LPAR6 gain and loss-of-function in HCC cells.


Assuntos
Carcinoma Hepatocelular , Deficiência de Colina , Neoplasias Hepáticas , Camundongos , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/prevenção & controle , Carcinoma Hepatocelular/metabolismo , Aminoácidos , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/prevenção & controle , Neoplasias Hepáticas/metabolismo , Colina/farmacologia , Deficiência de Colina/complicações , Deficiência de Colina/metabolismo , Dieta/efeitos adversos , Carcinogênese/genética
15.
Hepatology ; 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36815360

RESUMO

In the last decade, research into human hepatology has been revolutionized by the development of mini human livers in a dish. These liver organoids are formed by self-organizing stem cells and resemble their native counterparts in cellular content, multicellular architecture, and functional features. Liver organoids can be derived from the liver tissue or pluripotent stem cells generated from a skin biopsy, blood cells, or renal epithelial cells present in urine. With the development of liver organoids, a large part of previous hurdles in modeling the human liver is likely to be solved, enabling possibilities to better model liver disease, improve (personalized) drug testing, and advance bioengineering options. In this review, we address strategies to generate and use organoids in human liver disease modeling, followed by a discussion of their potential application in drug development and therapeutics, as well as their strengths and limitations.

16.
Chem Biodivers ; 20(3): e202300222, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36807727

RESUMO

Curcumin has a plethora of biological properties, making this compound potentially effective in the treatment of several diseases, including cancer. However, curcumin clinical use is compromised by its poor pharmacokinetics, being crucial to find novel analogs with better pharmacokinetic and pharmacological properties. Here, we aimed to evaluate the stability, bioavailability and pharmacokinetic profiles of monocarbonyl analogs of curcumin. A small library of monocarbonyl analogs of curcumin 1a-q was synthesized. Lipophilicity and stability in physiological conditions were both assessed by HPLC-UV, while two different methods assessed the electrophilic character of each compound monitored by NMR and by UV-spectroscopy. The potential therapeutic effect of the analogs 1a-q was evaluated in human colon carcinoma cells and toxicity in immortalized hepatocytes. Our results showed that the curcumin analog 1e is a promising agent against colorectal cancer, with improved stability and efficacy/safety profile.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Curcumina , Humanos , Neoplasias Colorretais/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/química
17.
Biomed Pharmacother ; 157: 114021, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36399831

RESUMO

The aggressiveness of melanoma and lack of effective therapies incite the discovery of novel strategies. Recently, a new dual acting hybrid molecule (HM), combining a triazene and a ʟ-tyrosine analogue, was synthesized. HM was designed to specifically be activated by tyrosinase, the enzyme involved in melanin biosynthesis and overexpressed in melanoma. HM displayed remarkable superior antiproliferative activity towards various cancer cell lines compared with temozolomide (TMZ), a triazene drug in clinical use, that acts through DNA alkylation. In B16-F10 cells, HM induced a cell cycle arrest at phase G0/G1 with a 2.8-fold decrease in cell proliferation index. Also, compared to control cells, HM led to a concentration-dependent reduction in tyrosinase activity and increase in caspase 3/7 activity. To maximize the therapeutic performance of HM in vivo, its incorporation in long blood circulating liposomes, containing poly(ethylene glycol) (PEG) at their surface, was performed for passively targeting tumour sites. HM liposomes (LIP HM) exhibited high stability in biological fluids. Preclinical studies demonstrated its safety for systemic administration and in a subcutaneous murine melanoma model, significantly reduced tumour progression. In a metastatic murine melanoma model, a superior antitumour effect was also observed for mice receiving LIP HM, with markedly reduction of lung metastases compared to positive control group (TMZ). Biodistribution studies using 111In-labelled LIP HM demonstrated its ability for passively targeting tumour sites, thus correlating with the high therapeutic effect observed in the two experimental murine melanoma models. Overall, our proposed nanotherapeutic strategy was validated as an effective and safe alternative against melanoma.


Assuntos
Lipossomos , Melanoma Experimental , Camundongos , Animais , Lipossomos/farmacologia , Distribuição Tecidual , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/patologia , Temozolomida , Proliferação de Células , Linhagem Celular Tumoral
18.
J Physiol Biochem ; 79(2): 261-272, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36495464

RESUMO

Response to chemoradiotherapy (CRT) in patients with locally advanced rectal cancer is highly variable. Identification of CRT non-responders and definite accurate biomarkers of response are unmet needs. In turn, adipokines might impact on colorectal cancer development. We hypothesized that imbalance in leptin and adiponectin modulates stemness potential CRT response in rectal cancer. Pre-CRT serum and tissue samples were collected from a cohort of locally advanced rectal cancer patients (n = 33), submitted to long-course CRT and proctectomy. Adiponectin and leptin were measured by ELISA in serum. In tumour biopsies, mRNA expression of stemness-related genes was evaluated by qRT-PCR and transcription factor STAT3 by immunoblotting. Correlations with clinical data and accuracy of potential CRT response biomarkers were evaluated. Carcinoembryonic antigen (CEA) but not leptin or adiponectin distinguished CRT responders from non-responders (p < 0.05). However, higher leptin and lower adiponectin serum levels were associated with positive extramesorectal nodes and extramural vascular invasion. mRNA expression of stemness factors was inversely correlated with adiponectin but positively correlated with leptin. STAT3 phosphorylation presented similar results. CEA levels together with STAT3 activation and OCT4/KLF4 expression accurately identified rectal cancer patients, CRT non-responders (AUROC 0.80; p < 0.05). Adipokines might impact rectal cancer stemness and patient prognosis. The leptin/STAT3 signalling axis provides the rational for a potential biomarker panel that identifies rectal cancer patients who will not benefit from CRT treatment.


Assuntos
Antígeno Carcinoembrionário , Neoplasias Retais , Humanos , Adipocinas , Adiponectina/genética , Prognóstico , Neoplasias Retais/terapia , Neoplasias Retais/metabolismo , Neoplasias Retais/patologia , RNA Mensageiro/genética , Resultado do Tratamento
19.
Hepatology ; 77(4): 1319-1334, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36029129

RESUMO

BACKGROUND AND AIMS: Receptor-interacting protein kinase 3 (RIPK3) mediates NAFLD progression, but its metabolic function is unclear. Here, we aimed to investigate the role of RIPK3 in modulating mitochondria function, coupled with lipid droplet (LD) architecture in NAFLD. APPROACH AND RESULTS: Functional studies evaluating mitochondria and LD biology were performed in wild-type (WT) and Ripk3-/- mice fed a choline-deficient, amino acid-defined (CDAA) diet for 32 and 66 weeks and in CRISPR-Cas9 Ripk3 -null fat-loaded immortalized hepatocytes. The association between hepatic perilipin (PLIN) 1 and 5, RIPK3, and disease severity was also addressed in a cohort of patients with NAFLD and in PLIN1 -associated familial partial lipodystrophy. Ripk3 deficiency rescued impairment in mitochondrial biogenesis, bioenergetics, and function in CDAA diet-fed mice and fat-loaded hepatocytes. Ripk3 deficiency was accompanied by a strong upregulation of antioxidant systems, leading to diminished oxidative stress upon fat loading both in vivo and in vitro. Strikingly, Ripk3-/- hepatocytes displayed smaller size LD in higher numbers than WT cells after incubation with free fatty acids. Ripk3 deficiency upregulated adipocyte and hepatic levels of LD-associated proteins PLIN1 and PLIN5. PLIN1 upregulation controlled LD structure and diminished mitochondrial stress upon free fatty acid overload in Ripk3-/- hepatocytes and was associated with diminished human NAFLD severity. Conversely, a pathogenic PLIN1 frameshift variant was associated with NAFLD and fibrosis, as well as with increased hepatic RIPK3 levels in familial partial lipodystrophy. CONCLUSIONS: Ripk3 deficiency restores mitochondria bioenergetics and impacts LD dynamics. RIPK3 inhibition is promising in ameliorating NAFLD.


Assuntos
Lipodistrofia Parcial Familiar , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/patologia , Gotículas Lipídicas , Lipodistrofia Parcial Familiar/metabolismo , Lipodistrofia Parcial Familiar/patologia , Fígado/patologia , Hepatócitos/metabolismo , Metabolismo Energético , Mitocôndrias/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
20.
Lab Chip ; 22(23): 4717-4728, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36349999

RESUMO

Antibody therapy has been one of the most successful therapies for a wide range of diseases, including cancer. One way of expediting antibody therapy development is through phage display technology. Here, by screening thousands of randomly assembled peptide sequences, it is possible to identify potential therapeutic candidates. Conventional screening technologies do not accommodate perfusion through the system, as is the case of standard plate-based cultures. This leads to a poor translation of the experimental results obtained in vitro when moving to a more physiologically relevant setting, such as the case of preclinical animal models or clinical trials. Microfluidics is a technology that can improve screening efficacy by replicating more physiologically relevant conditions such as shear stress. In this work, a polydimethylsiloxane/polystyrene-based microfluidic system for a continuously perfused culture of cancer cells is reported. Human colorectal adenocarcinoma cells (HCT116) expressing CXCR4 were used as a cell target. Fluorescently labeled M13 phages anti-CXCR4 were used to study the efficiency of the microfluidic system as a tool to study the binding kinetics of the engineered bacteriophages. Using our microfluidic platform, we estimated a dissociation constant of 0.45 pM for the engineered phage. Additionally, a receptor internalization assay was developed using SDF-1α to verify phage specificity to the CXCR4 receptor. Upon receptor internalization there was a signal reduction, proving that the anti-CXCR4 fluorescently labelled M13 phages bound specifically to the CXCR4 receptor. The simplicity and ease of use of the microfluidic device design presented in this work can form the basis of a generic platform that facilitates the study and optimization of therapies based on interaction with biological entities such as mammalian cells.


Assuntos
Bacteriófagos , Neoplasias , Animais , Humanos , Dispositivos Lab-On-A-Chip , Microfluídica/métodos , Receptores CXCR4 , Técnicas de Cultura de Células , Anticorpos , Mamíferos , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA